
Hierarchical Ada Robot Programming System (HARPS):

A Complete and Working Telerobot Control System Based on the NASREM Model

Stephen Leakc, Lead Engineer; National Institute of Standards und TechnologyRJI.577
Tom Green; Digital Equipment Corporation

Sue Cofer, Lead Author: Digitnl Equipment Corporation
Tim Sauerwein; NASA Goddard Space Right Center

Abstract

HARPS Is a telerobot control system which can perform some simple but useful tasks; thls capablllty la demonstrated
by performlng an ORU exchange demo. HARPS Is based on the NIST (formerly Natlonal Bureau of Standards, NBS)
NASREM model. The prlmary prograrnmlng language for all developed software I8 Ada, and the project Incorporated
a number of dlfferent CASE development tools. HARPS, Implemented at the NASA Goddard Robotlca lab, Integrates
several on golno efforts at the Goddard Robotlcs lab.

The results from thls effort are net surprising. NASREM was found to be a valid 8r.d useful model for bulldlng a
telerobot control system: Its hlerarchlcal and distributed structure creates a very natural and logical flow for devdoplng
and Irnplernentlng large, complex, and robust control systems. Slmllerly, the ablllty of Ade to create and enforce
abstractlon was found to enhance the Implementatlon of such a control system. The CASE tools utlllzed showed some
promlse In helping to deslgn a large system whlch pracesssdItremendous amount of data InvoMng very complex
computatlons and relatlonshlps.

An ovelvlew of NASREM. the ORU exchange demo, the HARPS system, and the development tools ured In HARPS
Is glven In thls paper.

1 OVERVIEW OF NASREM

The NASA Standard Reference Model (NASREM) was devel -
oped by the National Institute of Standards and Technology
(NIST, formerly National Bureau of Standards (NBS)) to serve as
a model for implementations of telerobot control systems for the
Space Station: i t is intended to be used as a reference document
for the functional specification of the Initial Operational Capa-
bilities (IOC)Flight Telerobot Servicer (FTS). NASREM defines
a logical computing architecture for telerobotics in general. At
the time it was developed, NASREh4 incorporated research and
development work sponsored by sweral groups, includin JPL,
Langley Research Center, JSFC, MSFC, Ames, DARPA, Wright
Patterson Air Force Base, MIT, and NET. NASREM incorporates
many of the concepts explored in these rojects, such as goal
decomposition, hierarchical planning, mo&l driven image analy-
sis, blackboard systems, expert systems, multivariant state space
control, reference model adaptive control, dynamic optimization,
and learning systems.

A diagram of the functional system architecture for NASREM
is shown in Figure 1. NASREM is hierarchically partitioned into
six control Iwels; a different fundamental mathematical transfor -
mation is performed at each level. In level 6, satellite servicing
mission plans are decomposed into high lwel service bay actions
which operate on groups or batches of parts. In level 5, these
general actions are decomposed into lower level tasks, typically
operating on individual objects. Level 4 is where each task is
decomposed into speciflc elementary level motions. In lwel 3,
objects are identified, and elementary m m are decomposed
into strings of intemdktr POSH:a p~senpccifiw both position
and orientation. In level 2, dynamics are computed, and In lwel
1, coordinates are transformed and outputs are servoed.

The NASREM architecture is also partitioned functionally into
three groups: task decomposition, sensor processin& and world
modeling. Sensor processing (G) modules deteet menta and rec-
ognize objects, or attcms, by filtering
data: this is often cayled sensor fusion. In
sensor processing G modules compute
probabilities of the correctness of the sc

position (H) modules take the high level goal and decompose
them into low lwel actions, which it will then execute. Each task
decomposition (H) module has a job assignment manager, a set of
planners, and a set of executors. The world model (M) modules
maintaln the common memory knowledge base, and potentially
provide predictions of expected sensor data,prcrvide current state
data to task decomposition execution modules, and build a hypo-
thetical state for the task decomposition planning modules.

The operator interface allows a human o erator to observe and
supervise the telerobot. This can be thou$: various devices, such
as joysticks, mouse, keyboard, voice 110, and CRTs. NASREM
allows the operator to interface at any lwel in the hierarchy, with
any functional module, at any time. The operator may choose
to perform a task under complete teleoperation control, have the
robot operate under automated control, or a combination of both
control modes, called mixed mode. 111 121

2 HARPS PROJECX GOALS

The primary goal of the HARPS project was to build a com-
fete and working telerobot control system based on the NAS-

EM model in order to prove the correctness and usefulness of
ted in NASREM: HARPS is, in fact, the first

prototype developed with NIST invohrement.
To demonstrate c~~~~~~ the system docs all aspects of a
small but useful demo using vision and force sensors to assist in
the transfer of an object from an unknown position to a second
position, switching between autonomous and teleoperation.



SENSORY WORLD
PROCESSING MODELING DECOMPOSITION

OPERATOR
CONTROL

Figure 1
NASREM: A Wlauchkrl Control Sptem Archltectum

evaluated during the project to test their usefulness in the HARPS
design process.

Another objective of HARPS was to incorporate existing hard-
ware and software into the system, tryin not to reinvent the
wheel as much as possible. HARPS is hi&y modularized; this
allows easy insertion of subsystems into HARPS as they are devel-
oped, or modified to fit in the case of existing hardwarelsoftware.
A detailed description of which modules have been developed
by the HARPS engineering team, and which were incorporated
from existing systems, is given in the following sections.

Finally, HARPS unifies several efforts at the Coddard Robotics
lab, serving to integrate the results of those efforts, and provid-
ing a solid base for future development for the Plight Telerobotic
Servicer at Coddard.

3 HARPSSCOPE

HARPS is an implementation of the first 3 control levels de-
scribed in NASREM: SERVO, PRIM, and E-MOW. The task de-
composition, world modeling, and sensor processing functional -
ity as described in NASREM are included, as well as a wo&station
to serve as the operator interface described in the model.

4 DEVELOPMENT APPROACH
A major challenge in the design of HARPS was to take the stan-

dard NASREM architecture, and ' e it meaning in the context
of our specific system under dwef&nent. We approached this

imt we viewed the
&ne SMT control

ik Mcllor red- time
SE tool so that the

system boundaries, external events, and leveled data and control
flows were defined. Once thiu data flow model waa develo d
a number of informal design walk-thru's and reviews were Eld
to both shape the design to the NASREM mold, and to d b l i s h
compliance to it.

Secondly, in addition to the data -flow model, module interface
descriptions were outlined as part of a traditional design docu-
ment [3]. Thls design document led naturally to a formal Ada
design speciflcation outlining package layout and tasking struc-
ture.

A very important step in developing the final NASREM -
compliant design was to establish a reasonable Task Decomposi -
tion scherna (see Section 7.3.3). This was accomplished manually
by simply dMdln the observable top-level steps of the existing
RCCL script in a fogical way into E-MOVE and PRIM command
decom ositions using appropriate NASREM classification guide -
lines. .&though key to the design, this derivation was based to a
large extent on common sense, and therefore was somewhat ar-
b- ~.Further clarification of the NASREM task decomposition
guidelines would enhance future automatization of this derivia -
tion process.

5 OVERVIEW OF ORU EXCHANGE DEMO
A slm e demo, the ORU Exchange Demo, was programmed

inHARg.The demo s the validity of the concepts out-
hedin the project oals while roviding a base for future work.
The Flight T e l e r o d c Senricer (#S) is emulated by a PUMA 762
robot, whkh is equipped with a wrist-mounted camera, a wrist
forceltonque SrMor, and an end-effector ca able of grasping the
ORU handles. l'herc is a sensor in the enX-cffector showing its
latch state: after matingwith the ORU, the end-effector must latch
before it can id:up and move the ORU. The ORUs are approx-
imately 3' x 8 x 3', with two ORU handles on top: one to hold
the ORU whlle transporting it; the other to open the ORU door
to expose the electronics inside. Also on top of the ORU is a ma-
chine vidan &get, consisting of four black blobs on a white back-
ground; &e rga is used to calculate the se of the ORU with
respect to the ann, there? locating the O K handles. The plat-
forms have 3 features (ho es) that compllment 3 features (pegs)
on the ORU. Thebe featurcs are used to i n m e that the ORU is
correctly placed on the platform: there are binary sensors in the
3 platform features showing when the ORU is correctly decked.
or mated with the platform. There are 3 cameras set up around
the platform to allow the operator to monitor the robot's opera-
tions from several different perspectives. The o erator interface
consists of an ANSI terminal, a graphics t e d two non-force-
reflecting joysticks for teleoperation of the robot, a video display



1

Flgure 2
ORU Exchange Demo

screen for the wrist camera, and video display screens and joy-
sticks for the monitoring cameras around the platform. Only the
wrist camera is available for machine vision.

To hegin the demo an ORU is sitting on a source platform, ready
to be moved to a destination platform; the position of the ORU
relative to the robot is unknown. The robot is in a pre-defined
park position. The operator tells the system to transfer the ORU
to the destination platform. The system requests help from the
operator in locating the ORU at the source platform. The operator
uses the joysticks to position the robot arm so that its wrist camera
can see the ORU target. The operator then uses the joysticks to
draw a bounding box on the machine vision monitor around the
four target blobs, and es control back to the system. The vision
system uses the bout& box to reduce unnecessary background
noise and focus on the four target blobs; the system then servos
to the target and, having locked in on the target, the pose of
the ORU and its handles are calculated and stored in the world
model. The system generates the commands for the robot to
mate with the ORU movement handle, extract the ORU from the
source platform, and move i t near the destination. The system
then requests help from the operator in mating the ORU to the
destination platform. The operator uses the joysticks to mate the
ORU to the platform, and the system withdraws the end-effector.
This completes the transfer. T h e operator then tells the system
to open and close the ORU door, which would allow required
servicing within the ORU; finally, the operator tells the system
to release the ORU door handle and return to it's park position,
completing the ORU exchange demo.

The operator plays two roles, both as a supervisor providing
task-level decisions and commands, and as a resource supplying
vision processing and manipulation skills; thus the o erator com-
pletes the skill-set required to do the ORU exchange &Isupplying
those skills currently not automated in HARPS. It would certainly
be feasible to have two separate people acting in the operator
capacity: a supervisor to issue cornman&, and an operator to
provide vision and manipulation skills.

6 HARPS SYSTEM OVERVIEW

The HARPS control is based on NASREM 131
; it includes those N A g g $ % g s needed to implement this
demo, and incorporates as much currently available hardware and
algorithms as possible.

The HARPS modules are functionally partitioned as in NAS-
REM into three main sections: task decomposition, sensor pro-
cessing, and world model. Task decomposition module8 com-
pute commands for actuators, sensor rocessin modules com-
pute measurements of the world, ant! the worfd model stores
these measurements in a useful format and provides the mecha -
nisms (servers) for the other modules to access this information.
The functional group into which a module belongs is usually ob-
vious: for example, the velocity of the manipulator as it moves
toward an object is computed in a task decomposition module

because it is a command to the manipulator. The pose (position
and orientation) of the object toward which the manipulator is
moving is computed in a sensor processing module if it is mea-
sured using the camera mounted on the manipulator. The object
pose, once calculated, and the mechanisms for accessing it, are
stored in a world model module. Sometimes, however, it is not
immediately clear to which oup a module should be
assigned. For example, the ch controls a camera fo-
cusing on a object may appear to be a sensor processing module,
since It is concerned with focusing a sensor; however, focusing
Is accomplished by sending an actuator command to the focus
servo and therefore belongs in task decomposition.

The task decomposition modules are hierarchically separated
into the NASREM control levels: SERVO, PRIM (primitives), and
E-MOVE (elemental moves). For every actuator, there is a task
decomposition SERVO module which monitors the action of that
actuator and uses sensor information (retrieved from the world
model) to verify that commanded actions were taken: typically,
servo algorithms which came with actuators fit the HARPS imple-
mentation of NASREM and are used unchanged. These SERVO
modules take commands with simple value parameters (num-
hers), while E-MOVE and PRIM modules take commands with
object parameters.

The operator interface as described in NASRFM has been di-
vided into two separate functions: supervisor and operator. The
supervisor issues high level task commands to task decomposi -
tion. The operator provides the low level skills required in per-
forming tasks, such as the ORU exchange demo described above.

All access to the world model data goes thru server modules
which guarantee correct access, resolve readlwrite conflicts, and
transform data to the desired format. Sensor processing servers
update information in the world model resulting from sensor mea-
surements; in the future, these servers will also provide sensor
fusion. Task decomposition servers retrieve data, transform the
data into the required reference frames, and extrapolate to the
requested time.

Most planning is done off-line, and the resultant plans are stored
in the world model. NASREM does not provide for the creation
or execution of sensor plans, so HARPS extends the concepts re-
lated to task planning to handle sensor planning. Plans for doing
tasks, and for using senson, are created off-line and stored in
the world model. Task Decomposition plans are then executed
directly by Task Decomposition modules. Sensor plans are exe-
cuted indirectly by the Task Decomposition modules, by sending
messa es to appropriate Sensor Processin modules. Thus all
controf in the system remains in the Task %ecomposition mod-
ules. As HARPS Is expanded, the plannin can be done in auto-
mated routines and then stored in the worfd model for later use;
the existing routtnes to extract and execute these plans would be
used, then, with little or no alteration.

7 DETAILED DESCRIITION OF HARPS MODULES

A daalled description of m m l modules im lemented in
HARPS follows. A bottoms up approach is taken, wtere the lower
levels are described first. A detailed description of ail modules
and module f u n d i o ~is outside the scope of this paper; more
detail is available in 131.

7.1 Senrar Processing
There are three levels inSensor Processing as shown inFigure 3.

The data acquisition level is the lowest level, and all sensors used
In HARPS have a data acquisition module. Only the camera has
module8 for the two higher levels:low,and intermediate. The
vislon processing aystem consists of a frame grabber installed in
a miaoVAX. There are three vision processing modules: FILTER,
SEGMENT, FEATURES. The vtsion system is coded in PASCAL,
and Interfaces to the rest of HARPS via DECNET. It can process
an lmage in approximately one second. This system was origi-
nally Lmplementcd in RSL (51, and was ported to the microVAX
and PASCAL as p& of the Gaddard RCCL ORU exchange demo.



inttnnrdl.ir
Ievd

lor k v d

I t 1

7.1.1 Data Aquisition Level
There are seven data acquisition modules. FORCE reads the

strain auges on the wrist sensor, and does some filterin MA-
NIP-IkfOTORS reads the joint encoders and motor ampliter sta-
tus. The motor amplifiers report binary current limit information.
CAMERA -MOTORS reads the camera motor encoders. ORU-
GRIPPER returns the gripper status, which indicates that the grip
per is either latched or unlatched. PLATFORM reads the platform
limit switches, which tell whether an ORU is docked. The two joy-
sticks used in teleoperation share the JOYSnCK modules used
in HARPS: camera, manipulator and bounding box. Each mod-
ule reads the corresponding joystick and any 'oystick buttons, and
sends the information to the World Model. dILTER reads a frame
from the vision system and filters it.

7.1.2 Low level
The SEGMENT module iconically segments the image frame

from FILTER In the HARPS implementation, segmentation is ac-
complished by thresholding.

7.1.3 Intermediate level
The FEATURES module finds the 2D position of the features in

the segmented image of the target. The target used in the HARPS
ORU exchange demo is four black circles on (I white background:
the black circles, or blobs, are the features to be located by FEA-
TURES. FEATURES chooses between two dlfferent algorithms,
coarse acquisition and f i i e acquisition, based on whether the tar-
get position is well known or not. Coarse acquisition isused when
the target is not well known, and can therefore incorporate very
little existing world model data. Coarse acquisition uses a stan-
dard connected components algorithm to locate the four blobs
within a bounding box: if no bounding box is present, one is
requested from the operator.

Fine acquisition is faster and more accurate than coarse acqui -
sition. It is used when the target osition is well known, which
means that the actual location of t fe four blobs will be within a
certain neighborhood of the predicted location of these features.
The fine a c r t i o n algorithm gets from the world model the pre-
dicted loca on of the features inthe image, puts a window around
each predicted location (which assumes that the actual image fea-
ture is within this window), and finds the first brightness moment
within each window, thus locating the actual features. The size
of the window around each feature varies, depending on the re-
quired speed and accuracy.

7.2 World Model
Figure 4 shows the internal structure of the world model, along

with the servers (called processes in the figure) that provide access
to the world model for Task Decomposihon and Sensor Process -
ing modules. This structure is internal to the common memory
described in NASREM.

Each storage module stores geometry and mass information on
the object i t models, together with any algorithms appropriate
to the object, such as kinematics. The World Model. then, is a
knoutledge bnse, not just a data base. Each server is an independent

acka e, one for each module that needs to access the World
Rode? The storage modules are not processes themselves: i f
they are packages which contain code, then this code is executed
by a server process. This code can be executed in parallel by
many different servers.

The World Model stores 6D information whenever i t is defined:
6D includes 3D for position and 3D for orientation, and is often
called "pose" in this paper. Only objects capable of indepen -
dent motion store dynamic terms, such as relative position and
velocity. All requests for time-dependent information will have a
time stamp from a global clock, providing t ime synchronization.
This concept is presented in NASREM and is newly developed
in HARPS.

7.2.1 Servers
There i s one server for each Task Decom osition and Sensor

Procewing module that accesses the World &del: the basic func.
tion of the server is to manipulate storage. Server modules are
named for the task decom osition or sensor processing module
that they serve. I f the E-MgVE Iwel FTS module in Task Decom -
position requires data from the World Model i t may issue one of
many requests to the TD.E-MOVE.FI'S server. GET-PLAN(plan -
type, qualifiers), for example, returns the plan for mating, de -
mating, or openin the qualifiers spec@ object and environ-
ment data, dcpenf& on the plan. GET-POSE(object) returns
the pose and associated error bounds for the object specified.
FIND(object,tolerance) requests that the FEATURES vision pro-
cessing module lind the requested object, and update its pose in
the world model.



If the PRIM level MANIPULATOR module in Task Decomposi -
tion requires data from the World Model i t may issue one of sev-
eral re uests to the TD.PRIM.MANIPULATOR server. The UP-
DATEJOSE(object) request is a subset of the FIND(object) algo-
rithm; however, UPDATE-POSE runs continually until an END-
UPDATE-POSE(object) is issued. The GET-FORCE(object) re-
quest returns the forces on the object. GET-COMPLIANCE(object)
returns the effective compliance, which is computed by sum-
ming the compliances of all the objects in the kinematic chain
that includes the given object. GET-TRAJ-PARAMS(object) re-
turns velocity and acceleration limits, as required by the Joy-
stick module. GET-VEL(object) gets the velocity and associated
error bounds of the object. INVERSE -KINEMATICS(cartesian -
point,configurarion) performs the manipulator’s inverse kinemat -
ics algorithm to convert the Cartesian point into motor or joint
space, The configuration is used to resolve ambiguities in kine-
matics, such as elbow up or down.

The TD.PRIM.CAMERA server module passes information to
the PRIM level CAMERA module in Task Decomposition. One
request is GET-VIEWED-SIZE(object), which determines the ap-
parent size of the object or feature in the camera image; this i s
used to determine the appropriate zoom setting.

The TD.SERVO.MANIPULATOR server for the SERVO level
MANIPULATOR module in Task Decomposition supports only
one request, GET-POSE-VEL(motor), which returns the current
encoder count (position) and velocity of that manipulator motor.

The SP.CAMERA server, which interfaces the Sensor Process -
ing camera modules to the world model, supports requests like
UPDATE-POSE(object, features), which updates the pose of a n
object, by matching the features to the object model. For the
case of the 4 blob target, the model matching algorithm is taken
from 141 .

7.2.2 Storage Modules
Storage modules are Ada packages or data structures containing

the data necessary for Task Decomposition and Sensor Processing
modules to do their tasks. Algorithms for determining dynamic
information concerning an object may be present with the storage
module of that object, but these algorithms would be executed
by the requesting server. The storage modules and servers are
shown in Figure 4.

7.3 Task decomposition
Figure 5 shows the Task Decomposition hierarchy. The verti-

cal levels correspond to the NASREM Task Decomposition E-
MOVE, PRIM, and SERVO levels, while the horizontal divisions
reflect individual hardware components: FTS includes the ma-
nipulator and camera motors, and the gripper actuators. There
are task decomposition modules described in NASREM which
are not present in the current HARPS implementation. The grip
per PRIM level module has no specific functions in HARPS and is
therefore not included. There is no Camera E-MOVE module be-
cause i t is not capable of complex tasks. The supervisor performs
the functions of the TASK and higher levels in NASREM.

SERVO modules take commands with simple value parameters
(numbers), while E-MOVE and PRIM modules take commands
with object parameters. For exam le, the PRIM CAMERA mod-
ule takes the command FOCUS-6N (object), while the SERVO
CAMERA module take3 the command SWiVO-FOCUS(erlcoder -
tics). Similarly, the PRIM MANIPULATOR module takes the com-
mand AIM-MOVE (sensor, target, goal): sensor and target are object
names. The SERVO MANIPULATOR module accepts the com -
mand SERVO-MOTOR (encoder -tics).

7.3.1 SERVO level
Manipulator

There are six joints. and therefore six independent manipulator
SERVO level modules: these are the joint servo algorithms which
came with the robot. They consist of simple PID joint position
servo algorithms, sending currents to the motors. In addition to
the servo algorithm. each module attempts to control the motor
dynamics in a simple way. Each step input is linearly interpo -
lated at the servo rate. The motor current i s limited, and i f the
motor gets outside a preset following error, it is shut off and the
motor breaks applied. The only input command to the manipula -
tor SERVO level is SET-POINT(desired -position), which issues a
simple PID joint position servo algorithm, sending current com-
mands to the motors.

ORU gripper

There are two independent gripper modules, one for the latch
actuator and one for the screw actuator. The two latch commands
are LATCH and UNLATCH, and the two screw commands are
TIGHTEN -SCREW(turns) and UNTIGHTEN -SCREW(turns)

Camera

There are three independent SERVO level camera modules for
each camera: iris, focus, zoom. They consist of :he PID posi-
tion servo algorithms which came with the hardware, sending
current commands to the camera iris, focus, and zoom motors.
The only input command to the camera SERVO level is SET-
POINT(desired -iris, desired-focus, or desired-zoom).

7.3.2 PRIM level
Manipulator

A primary function of this module is to control the dynamic
behavior of the manipulator. This is done by limiting the accel -
eration and velocity of the individual joints, as well as limiting
the acceleration and velocity of the tool point at the end of the
arm. The limits are currently hand-coded; when the E-MOVE
and PRIM level planners are implemented, the limits will be set
dynamically by the planners.

Another function of this module is low-level collision avoidance
and reflex reactions. Collision avoidance at this level refers to not
exceeding joint limits, and avoiding the ORU, as long as i t c a n
be located by the vision system. Reflex reactions will cause the
robot to back off from any unexpected force sensed by the wr is t
forceltorque sensor.

1 11
robot motors ORU gripperumr1

I
Figure 5

Tark Decompltlon Modules



Higher level functions performed by this module include simple
path following, cartcsian sensor servo for finding the ORU, force
control for matin the ORU to the end effector and the platform,
and non-force-re\ecting teleoperation (both Cartesian and joint
space).

AI orithms for all these functions are taken from the existing
RCtL Coddard ORU exchange demo code and the RSL system
151There are several PRIM level manipulator input commands im-
plemented in HARPS. TELEOPERATE reads a desired pose from
the world model and drives the manipulator to this pose; the de-
sired pose has been generated by the manipulator joystick. This
illustrates a key NASREM concept: the world model facilitates
the separation of two independent processes, sensor processing
and task decomposition. In this case, the processing of the joy-
stick (sensor processing) ha pens independently of the manip-
ulator’s motion that TELEOl%RATE generates (task decomposi -
tion). Therefore, any joystick can be used to drive the manipula -
tor. Similarly AIM-MOVE(sensor,target.goal,traj -params) uses a
goal position generated simultaneously in sensor processing this
allows AIM-MOVE to maintain the sensor’s view of the target
while moving the manipulator which holds the sensor to this goal
position.

PATH(segment -list) follows a piece -wise smooth list of seg-
ments, given in either Cartesian or joint space. T h e path should
be free of obstacles: this should be checked by the E-MOVE
level, and is part of the next planned release of HARPS. PEG-
IN-HOLE(he1d -object,environment) inserts the held object (the
peg) into the environment (the hole); a simple active com-
pliance algorithm is used. Similarly, PEG-FROM-HOLE(held -
object.environment.goa1) extracts the held object from the envi -
ronment using active compliance.

Camera

The function of this module is to decide how to set the cam -
era ins, focus, and zoom parameters. FOCUS-ON(object) is a
camera PRIM level input command which determines the focus
setting from the object’s a arent size and ran e, as obtained
from the world model. TE!gOPERATE allows t i e operator the
set the camera’s iris, focus and zoom, using the camera joystick.

7.3.3 E-MOVE level
There i s only one E-MOVE level module, ETS, which Is based

on the RCA scripts in the existing Coddard ORU exchange demo.
FTS decomposes commands from the supervisor into commands
for PRIM level manipulator, commands for SERVO level gripper
modules, or sub-tasks. Sub-tasks are further decomposed, just as
supervisor commands, until al l sub-tasks have been decomposed
into laver level commands. The command decomposition is re-
trieved kom the world model; the command decom osition has
been manually planned off-line, instead of dynamicafly planned.
TRANSFFR(object,destination) is an FI’S input command which
decomposes into the foUowing[lan: ,find the object, mate the end
effector to the object, demate t e ob~ectfrom its current position,
find the destination position, mate the object to the destination
position, and finall demate the end effector from the object.
OPEN(ORU.door) drecomposes into the following plan: find the
door handle, mate the end effector with the door handle, nuUi
the forces on the grlpper, calculate and follow the required path
to open the door, and nullify the forces on the grip er again.
Similarly, CLOSE(ORU.door), which assumes OPEN(8RU.door)
has completed successfully, decompose to: calculate and follow
the required path to close the door, nullify the forces on the end
effector, and demate the end effector from the door handle. I t
should be noted there is no freespace checking, however; this is
also included in the next planned release of HARPS.

7.4 Workstation: operator interface
The major design challenges for the the operatorlsupervisor in-

terface under NASREM were deciding what information from the
world model to display, how to give commands to the system,
and how to do both of the above according to accepted human-
factors engineering principles.

By cent~allyIocaHn sensor and task command status in the
World Model, N A S R h facilitates access to the data by the dis-
play system. Design decisions as to which data to display were
made according to whether the information was supervisory (com-
mand status) or operational (sensor feedback, robot pose). It
proved important from the human-factors viewpoint to provide
sufficient sensor data to the operator to allow correct telerobotic
operation of the ORU exchange demo without overwhelming the
operator with too much data. On this point the proper design
and layout of the displays proved to be crucial.

8 CONCLUSIONS

The goals of the HARPS project were to build a complete and
working NASREM implementation, to determine the correctness
and usefulness of the NASREM architecture, to evaluate Ada as
an implementation language for large real-time systems, and to
incorporate existing hardware and software as much as possi -
ble. NASREM proved to be mostly correct and useful. When
implementing a full.working telerobot control system such as
HARPS, however. there were a f e w things that were more practi -
cally viewed from a different perspective than that given in NAS.
REM For example, i t was more accurately stated to name the
sensor processing hicrarchy levels as data acquisition, low level,
intermediate level, and high level, instead of using the respective
task decomposition hierarchical breakdown of servo, primitive.
elemental move, and task level. Similarly, the world model does
not fit the task decomposition breakdown. Both sensor process -
ing and the world model are still hierarchically structured; the
point is that they have their own structure, not necessarily the
same as the task decomposition structure. In addition, in HARPS,
the world model and common memory are fused together, not
separated as in NASREM.

It also became apparent that the operator cannot practically in-
terface to every level in the system: the appropriate operator in-
terfaces were found to be the hi er task decomposition modules
and in Sensor Processing low-Peve1 modules through joysticks.
These two function8 were explicitly separated into the supervisor
and operator interfaces.

On the whole, the main concepts in NASREM proved very use-
ful. Its hierarchical approach lends itself to complete, working
robot controllers. The use of the world model to interface sensing
and control is part idarty beneficial, as is the concept of cyclicly
executed independent processes, distributed over multiple pro-
cessors.

Another major findin of the HARPS project is that Ada is fast
enough to control a rotot in real-time. The PRIM MAN I~UU -
TOR module was coded entirely in Ada, along with most of the
world model and its sewem. All of this code runs on a single
microVAX, and meeta the update rate required.

Ada is also extreme1 useful from a software engineerin view
point. There are Overhlindividual compilation units in&PS:
all In a unified Ada library. The strong typing and data abstrac -

of Ada were C N ~in managing a system of this
e compilation of specifications and bodles was

very helpful dudng the design phaees. We wrote many drafts of
high-level bodla, wing low-level specificatiow without bodies,
to be sure the specifications were complete. This snved many
hours of recompihtion time.

CASE tools proved useful during the design phages It helped
the dcsipem vlmurlize the system, and the des1 w a l k - h s en-
sured that everyone had a common understan&. However, a
single CASE tool was not
in the design language to
trol system. We continue to search for a CASE tool that provides
modeis of packaging and abstraction as powerful as those in Ada.
It would also be useful to be able to automatically execute the de-
sign model, instead of requiring manual walk-thnu. This topic
could easily serve as the subject of another paper.



Incorporating existing algodthms and software packages was
quite straight -forward, due to the openess and modularity of the
NASREM architecture. The pre-existing vision system was de-
signed with a NASREM -style interface in mind, and it proved
simple to plug it into HARPS. The algorithms inherited from RSL
and the RCCL demo were re-implemented in Ada, with only mi-
nor changes, and formed the core of the PRIM MANIPULATOR
module.

9 FOLLOW -ON WORK

There are several areas of HARPS that need more development,
before we have a fully functional telerobot control system. Task
decomposition needs to be enhanced by adding the TASK level,
along with on-line path and task planning, force reflecting teleop
eration, and dual-arm cooperation. Task planning would involve
both active decomposition, and planning for the use of sensors.

Sensor processing can be enhanced with more sophisticated vi-
sion algorithms, to allow finding poses of objects that do not have
simple vision targets. This area can benefit from the NASREM ar-
chitecture by using the world model to store and integrate partial
knowledge, which can in turn guide further sensor processing.
In addition, the world model can be enhanced with sensor fu-
sion algorithms (in the sensor processing servers), and more flex -
ible pian representations, to sup ort on-line planning. In light of
the HARPS experience, adding tftese new capabilities to HARPS
should be straight-forward.

At the completion o i HARPS, the HARPS engineerin team
plans to work with NIST so that NASREM can be rcv ise i to re-
flect what was learned from an actual implementation, making
NASREM a more accurate and practical standard for robot con-
trol.

Reference8

121

131

141

151

JamenAlbus. Harry McCnin, and Ronald Lumia. NASAlNBS Stan-
dard Reference Model for Telerobot Control System Architecture
(NASREM), December 4, 1986

Jam- Albus, Harry McCain, and Ronald Lumia, NASRW -
Standard Reference Model for Telerobot Control, in Proceedings of
1987 Goddard ConJerence on Spce Applications of A r t i j i d Infelligence
(AlJ and Robotics, May S 1 4 , 1987

Stephen Leakc, Hierarchical Ada Robot Programming System
including canonical hand-coded optimized routines for demos
(HARPSichord), NASREM ORU transfer demo modules, interfaces
and hardware, internal report

Yubin Hunk Pen-shu Yeh, David Harwood, “Passive Ranging to
Known Planar Point Sets’, 1985 IEEE Conference on Robotics and
Automation, March 15%. St. Louis Missouri, pp 80-85.

Stephen L e a k , “Robot Sensor Language”, 1987 Goddard Confer.
ence on Space Awlications of Artificial Intell ipm and Robotics,
May 13-14, 1987, NASA Goddard Space Flight Center, Greenbelt,
MD.


